首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3470篇
  免费   327篇
  国内免费   5篇
  2023年   18篇
  2022年   13篇
  2021年   68篇
  2020年   33篇
  2019年   60篇
  2018年   65篇
  2017年   70篇
  2016年   120篇
  2015年   206篇
  2014年   216篇
  2013年   235篇
  2012年   307篇
  2011年   285篇
  2010年   194篇
  2009年   149篇
  2008年   206篇
  2007年   221篇
  2006年   191篇
  2005年   154篇
  2004年   135篇
  2003年   129篇
  2002年   114篇
  2001年   44篇
  2000年   41篇
  1999年   33篇
  1998年   36篇
  1997年   16篇
  1996年   14篇
  1995年   15篇
  1994年   10篇
  1992年   24篇
  1991年   27篇
  1990年   22篇
  1989年   24篇
  1988年   19篇
  1987年   21篇
  1986年   10篇
  1984年   12篇
  1983年   21篇
  1981年   10篇
  1980年   13篇
  1979年   12篇
  1978年   11篇
  1977年   10篇
  1976年   18篇
  1974年   13篇
  1973年   22篇
  1972年   18篇
  1971年   13篇
  1970年   11篇
排序方式: 共有3802条查询结果,搜索用时 15 毫秒
101.
The International Plant Proteomics Organization (INPPO) is a non‐profit organization whose members are scientists involved or interested in plant proteomics. Since the publication of the first INPPO highlights in 2012, continued progress on many of the organization's mandates/goals has been achieved. Two major events are emphasized in this second INPPO highlights. First, the change of guard at the top, passing of the baton from Dominique Job, INPPO founding President to Ganesh Kumar Agrawal as the incoming President. Ganesh K. Agrawal, along with Dominique Job and Randeep Rakwal initiated the INPPO. Second, the most recent INPPO achievements and future targets, mainly the organization of first the INPPO World Congress in 2014, tentatively planned for Hamburg (Germany), are mentioned.  相似文献   
102.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   
103.
104.
Neurochemical Research - Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine...  相似文献   
105.
Abiotic stress is a major force of selection that organisms are constantly facing. While the evolutionary effects of various stressors have been broadly studied, it is only more recently that the relevance of interactions between evolution and underlying ecological conditions, that is, eco-evolutionary feedbacks, have been highlighted. Here, we experimentally investigated how populations adapt to pH-stress under high population densities. Using the protist species Tetrahymena thermophila, we studied how four different genotypes evolved in response to stressfully low pH conditions and high population densities. We found that genotypes underwent evolutionary changes, some shifting up and others shifting down their intrinsic rates of increase (r0). Overall, evolution at low pH led to the convergence of r0 and intraspecific competitive ability (α) across the four genotypes. Given the strong correlation between r0 and α, we argue that this convergence was a consequence of selection for increased density-dependent fitness at low pH under the experienced high density conditions. Increased density-dependent fitness was either attained through increase in r0, or decrease of α, depending on the genetic background. In conclusion, we show that demography can influence the direction of evolution under abiotic stress.  相似文献   
106.
BackgroundSoil-transmitted helminth (STH) infections are still prevalent in Indonesia, with roughly one-third of infected population being preschool-age children (PSC), which are generally at higher risk of morbidity such as malnutrition and anemia. This study aimed to investigate the association of STH infections with nutritional status and anemia among PSC in Nangapanda subdistrict, Ende, East Nusa Tenggara.MethodsA cross-sectional survey involving PSC ranging from 12 to 59 months old from Nangapanda subdistrict, Ende district, East Nusa Tenggara was performed. Socio-demographic, breastfeeding, and complementary feeding information was obtained from structured questionnaires, while nutritional and anemia status was determined from anthropometry and hemoglobin measurements, respectively. Anthropometric z-scores were calculated based on the World Health Organization 2006 standards and stool samples were examined using Kato-Katz method.ResultsA total of 393 PSC randomly selected from 22 villages were examined. The prevalence of underweight, stunting, wasting, and anemia were 33.1%, 40.2%, 17.1%, and 60.3%, respectively. STH infection, predominated by Ascaris lumbricoides, was found in 160 (58.8%) PSC. Single STH infection, but not multiple infection, was independently associated with a lower risk of anemia (odds ratio [OR] 0.320, 95% confidence interval [CI]: 0.126–0.809, p = 0.016). Similar association with anemia was also found on mild STH infection (OR 0.318 [95% CI: 0.114–0.887], p = 0.029). On the other hand, younger children were found to have a higher risk of anemia and stunting. None of the examined variables were independently associated with underweight and wasting.ConclusionSTH infection as well as anemia and malnutrition were prevalent in this region. However in this study, current STH infections seemed to have minimal negative impact on children’s nutritional status.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号